
The MKWS manual: embedded metasearching
with the MasterKey Widget Set

Mike Taylor

Introduction

There are lots of practical problems in building resource discovery solutions. One
of the biggest, and most ubiquitous is incorporating metasearching functionality
into existing web-sites – for example, content-management systems, library
catalogues or intranets. In general, even when access to core metasearching
functionality is provided by simple web-services such as Pazpar2, integration
work is seen as a major part of most projects.
Index Data provides several different toolkits for communicating with its
metasearching middleware, trading off varying degrees of flexibility against
convenience:

• pz2.js – a low-level JavaScript library for interrogating the Service Proxy
and Pazpar2. It allows the HTML/JavaScript programmer to create
JavaScript applications to display facets, records, etc. that are fetched
from the metasearching middleware.

• masterkey-ui-core – a higher-level, complex JavaScript library that uses
pz2.js to provide the pieces needed for building a full-featured JavaScript
application.

• MasterKey Demo UI – an example of a searching application built on top of
masterkey-ui-core. Available as a public demo at http://mk2.indexdata.
com/

• MKDru – a toolkit for embedding MasterKey-like searching into Drupal
sites.

All but the last of these approaches require programming to a greater or lesser
extent. Against this backdrop, we introduce MKWS (the MasterKey Widget
Set) – a set of simple, very high-level HTML+CSS+JavaScript components that
can be incorporated into any web-site to provide MasterKey searching facilities.
By placing <div>s with well-known MKWS classes in any HTML page, the
various components of an application can be embedded: search-boxes, results
areas, target information, etc.

1

http://www.indexdata.com/pazpar2
http://www.indexdata.com/pazpar2/doc/ajaxdev.html
http://www.indexdata.com/service-proxy/
http://www.indexdata.com/pazpar2/
http://mk2.indexdata.com/
http://mk2.indexdata.com/
http://www.indexdata.com/masterkey-drupal
https://www.drupal.org/
http://mkws.indexdata.com/
http://mkws.indexdata.com/

Simple example

The following is a complete MKWS-based searching application:

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>MKWS demo client</title>
<script type="text/javascript" src="//mkws.indexdata.com/mkws-complete.js"></script>
<link rel="stylesheet" href="//mkws.indexdata.com/mkws.css" />

</head>
<body>

<div class="mkws-search"></div>
<div class="mkws-results"></div>

</body>
</html>

Go ahead, try it! Simply put the above in a file (e.g. index.html), drop it into a
folder accessible with an ordinary web-server (e.g. Apache HTTP Server) and
load it in your web browser. Just like that, you have working metasearching.

How the example works

If you know any HTML, the structure of the file will be familiar to you: the
<html> element at the top level contains a <head> and a <body>. In addition
to whatever else you might want to put on your page, you can add MKWS
elements.

These fall into two categories. First, the prerequisites in the HTML header,
which are loaded from the tool site mkws.indexdata.com:

• mkws-complete.js contains all the JavaScript needed by the widget-set,
including a copy of the jQuery library.

• mkws.css provides the default CSS styling.

Second, within the HTML body, <div> elements with special classes that begin
mkws- can be provided. These are filled in by the MKWS code, and provide the
components of the searching UI. The very simple application above has only two
such widgets: a search box and a results area. But more are supported.

2

//example.indexdata.com/simple.html

Defining widget elements

Widget type

An HTML element is made into an MKWS widget by including an MKWS
class-name. These names begin mkws- and what follows that prefix specifies the
type of the widget. The type can be any sequence of alphanumeric characters
and hyphens except something beginning team – see below.

The main widgets are:

• mkws-search – provides the search box and button.

• mkws-results – provides the results area, including a list of brief records
(which open out into full versions when clicked), paging for large results
sets, facets for refining a search, sorting facilities, etc.

• mkws-progress – shows a progress bar indicating how many of the targets
have responded to the search request.

• mkws-stat – provides a status line summarising the statistics of the various
targets.

• mkws-switch – provides links to switch between a view of the result records
and of the targets that provide them. Only meaningful when mkws-targets
is also provided.

• mkws-targets – the area where per-target information will appear when
selected by the link in the mkws-switch area. Of interest mostly for fault
diagnosis rather than for end-users.

• mkws-lang – provides links to switch between one of several different UI
languages. By default, English, Danish and German are provided.

To see all of these working together, just put them all into the HTML <body>
like so:

<div class="mkws-switch"></div>
<div class="mkws-lang"></div>
<div class="mkws-progress"></div>
<div class="mkws-search"></div>
<div class="mkws-results"></div>
<div class="mkws-targets"></div>
<div class="mkws-stat"></div>

The full set of supported widgets is described in the reference guide below.

3

Widget team

In general a set of widgets work together in a team: in the example above, the
search-term that the user enters in the mkws-search widget is used to generate
the set of records that are displayed in the mkws-results widget.

Sometimes, it’s desirable to have multiple teams in a single page. A widget can
be placed in a named team by giving it (in addition to its main class) a class that
begins with mkws-team- and what follows that prefix specifies the team that the
widget is part of. For example, <div class="mkws-search mkws-team-aux">
creates a search widget that is part of the aux team.

Widgets that do not have a team specified (as in the examples above) are placed
in the team called AUTO.

Configuring widgets

Global configuration

Many aspects of the behaviour of MKWS can be modified by setting parameters
into the mkws_config object. So the HTML header looks like this:

<script type="text/javascript">
var mkws_config = {

lang_options: ["en", "da"]
lang: "da",
sort_default: "title",

};
</script>
<script type="text/javascript" src="http://mkws.indexdata.com/mkws-complete.js"></script>

This configuration restricts the set of available UI languages English and Danish
(omitting German), sets the default to Danish (rather than the English), and
initially sorts search results by title rather than relevance (though as always this
can be changed in the UI).

The full set of supported configuration settings is described in the reference
guide below.

Per-widget configuration

In addition to the global configuration provided by the mkws_config object,
individual widgets’ behaviour can be configured by providing configuration
settings as attributes on their HTML elements. For example, a records widget

4

might be restricted to displaying no more than three records by setting the
maxrecs parameter as follows:

<div class="mkws-records" maxrecs="3">

Although this works well, HTML validators will consider this element unaccept-
able, since the maxrecs attribute is not part of the HTML schema. However,
attributes beginning data- are always accepted as HTML extensions, much
like email headers beginning with X-. Therefore, the widget set also recognises
configuration attributes prefixed with data-mkws-, so:

<div class="mkws-records" data-mkws-maxrecs="3">

The first form is more convenient; the second is more correct.

Because some configuration settings take structured values rather than simple
strings, they cannot be directly provided by inline attributes. To allow for this,
the special attribute data-mkws-config, if provided, is parsed as JSON and its
key-value pairs used as configuration settings for the widget in question. For
example, the value of lang_options is an array of strings specifying which of
the supported UI languages should be made available. The following invocation
will limit this list to only English and Danish (omitting German):

<div class="mkws-lang" data-mkws-config=’{ "lang_options": ["en", "da"] }’></div>

(Note that, as JSON requires double quotes around all strings, single quotes
must be used to contain the entire attribute value.)

Control over HTML and CSS

More sophisticated applications will not simply place the widgets together, but
position them carefully within an existing page framework – such as a Drupal
template, an OPAC or a SharePoint page.

While it’s convenient for simple applications to use a monolithic mkws-results
area which contains record, facets, sorting options, etc., customised layouts may
wish to treat each of these components separately. In this case, mkws-results
can be omitted, and the following lower-level widgets provided instead:

• mkws-facets – provides the facets

• mkws-ranking – provides the options for how records are sorted and how
many are included on each page of results.

5

• mkws-pager – provides the links for navigating back and forth through the
pages of records.

• mkws-navi – when a search result has been narrowed by one or more facets,
this area shows the names of those facets, and allows the selected values
to be clicked in order to remove them.

• mkws-records – lists the actual result records.

Customisation of MKWS searching widgets can also be achieved by overriding
the styles set in the toolkit’s CSS stylesheet. The default styles can be inspected
in mkws.css and overridden by any styles that appear later in the HTML. At
the simplest level, this might just mean changing fonts, sizes and colours, but
more fundamental changes are also possible.

To properly apply styles, it’s necessary to understand how the HTML is struc-
tured, e.g. which elements are nested within which containers. The structures
used by the widget-set are described in the reference guide below.

Customised display using Handlebars templates

A lot can be done by styling widgets in CSS and changing basic MKWS config
options. For further customisation, MKWS allows you to change the markup
it outputs for any widget. This is done by overriding the Handlebars template
used to generate it. In general these consist of {{things in double braces}}
that are replaced by values from the system. For details of Handlebars template
syntax, see the online documentation.

The templates used by the core widgets can be viewed in our git repository.
Parameters are documented in a comment at the top of each template so you can
see what’s going where. If all you want to do is add a CSS class to something or
change a span to a div it’s easy to just copy the existing template and make
your edits.

Overriding templates

To override the template for a widget, include it inline in the document as
a <script> tag marked with a class of mkws-template-foo where foo is the
name of the template you want to override (typically the name of the wid-
get). Inline Handlebars templates are distinguished from JavaScript via a
type="text/x-handlebars-template" attribute. For example, to override the
pager template you would include this in your document:

<script class="mkws-template-pager" type="text/x-handlebars-template">
...new Pager template

</script>

6

mkws.css
http://handlebarsjs.com/
http://handlebarsjs.com/
https://github.com/indexdata/mkws/tree/master/src/templates

The Facet template has a special feature where you can override it on a per-facet
basis by adding a dash and the facet name as a suffix e.g. facet-subjects. (So
class="mkws-template-facet-subjects".) When rendering a facet for which
no specific template is defined, the code falls back to using the generic facet
template, just called facet.

You can also explicitly specify a different template for a particular instance of
a widget by providing the name of your alternative (e.g. special-pager) as
the value of the template key in the MKWS config object for that widget: for
example, <div class="mkws-pager" template="special-pager"/>.

Templates for MKWS can also be precompiled. If a precompiled template of
the same name is found in the Handlebars.templates object, it will be used
instead of the default.

Inspecting metadata for templating

MKWS makes requests to the Service Proxy or Pazpar2 that perform the actual
searching. Depending on how these are configured and what is available from
the targets you are searching, there may be more data available than what is
presented by the default templates.

Handlebars offers a convenient log helper that will output the contents of a
variable for you to inspect. This lets you look at exactly what is being returned
by the back-end without needing to use a JavaScript debugger. For example, you
might prepend {{log hits}} to the Records template in order to see what is
being returned with each search result in the list. In order for this to work, you
will need to enable verbose output from Handlebars which is done by including
this line or similar:

<script>Handlebars.logger.level = 1;</script>

Internationalisation

If you would like your template to use the built-in translation functionality, output
locale specific text via the mkws-translate helper like so: {{{mkws-translate
"a few words"}}}.

Example

Rather than use the toolkit’s included AJAX helpers to render record details
inline, here’s a summary template that will link directly to the source via the
address provided in the metadata as the first element of md-electronic-url:

7

http://handlebarsjs.com/precompilation.html

<script class="mkws-template-summary" type="text/x-handlebars-template">

{{md-title}}

{{#if md-title-remainder}}

{{md-title-remainder}}
{{/if}}
{{#if md-title-responsibility}}

<i>{{md-title-responsibility}}</i>
{{/if}}

</script>

For a more involved example where markup for multiple widgets is decorated
with Bootstrap classes and a custom Handlebars helper is employed, take a look
at the source of topic.html.

Some Refinements

Message of the day

Some applications might like to open with content in the area that will subse-
quently be filled with result-records – a message of the day, a welcome message
or a help page. This can be done by placing an mkws-motd division anywhere on
the page. It will initially be moved into the mkws-results area and displayed,
but will be hidden as soon as the first search is made.

Popup results with jQuery UI

The jQuery UI library can be used to construct MKWS applications in which
the only widget generally visible on the page is a search box, and the results
appear in a popup. The key part of such an application is this invocation of the
MKWS jQuery plugin:

<div class="mkws-search"></div>
<div class="mkws-popup" popup_width="1024" popup_height="650">

<div class="mkws-results"></div>
</div>

The necessary scaffolding can be seen in an example application, popup.html.

The relevant properties (popup_width, etc.) are documented below in the
reference section.

8

http://getbootstrap.com/
http://example.indexdata.com/topic.html?q=water
http://en.wikipedia.org/wiki/JQuery_UI
http://example.indexdata.com/popup.html

MKWS target selection

Introduction

MKWS accesses targets using the Pazpar2 metasearching engine. Although
Pazpar2 can be used directly, using a statically configured set of targets, this
usage is unusual. More often, Pazpar2 is fronted by the Service Proxy (SP),
which manages authentication, sessions, target selection, etc. This document
assumes the SP is used, and explains how to go about making a set of targets (a
“library”) available, how to connect your MKWS application to that library, and
how to choose which of the available targets to use.

By default MKWS configures itself to use an account on a service hosted by
sp-mkws.indexdata.com. By default, it sends no authentication credentials,
allowing the appropriate account to be selected on the basis of referring URL or
IP address.

If no account has been set up to recognise the referring URL of the application
or the IP address of the client, then a default “MKWS Demo” account is used.
This account (which can also be explicitly chosen by using the username mkws,
password mkws) provides access to about a dozen free data sources.

In order to search in a customised set of targets, including subscription resources,
it’s necessary to create an account with Index Data’s hosted Service Proxy, and
protect that account with authentication tokens (to prevent unauthorised use of
subscription resources).

Maintaining the library

The Service Proxy accesses sets of targets that are known as “libraries”. In
general, each customer will have their own library, though some standard libraries
may be shared between many customers – for example, a library containing all
open-access academic journals. A library can also contain other configuration
information, including the set of categories by which targets are classified for
the library.

Libraries are maintained using MKAdmin (MasterKey Admin). Specifically,
those used by MKWS are generally maintained on the “MKX Admin” installation
at http://mkx-admin.indexdata.com/console/ In general, Index Data will
create a library for each customer, then give the customer a username/password
pair that they can use to enter MKAdmin and administrate that library.

Once logged in, customers can select which targets to include (from the list of
several thousand that MKAdmin knows about), and make customer-specific
modifications to the target profiles – e.g. overriding the titles of the targets.

Most importantly, customers’ administrators can add authentication credentials
that the Service Proxy will use on their behalf when accessing subscription

9

http://mkx-admin.indexdata.com/console/

resources – username/password pairs or proxies to use for IP-based authenti-
cation. Note that it is then crucial to secure the library from use by
unauthorised clients, otherwise the customer’s paid subscriptions will be
exploited.

Access to libraries is managed by creating one or more “User Access” records
in MKAdmin, under the tab of that name. Each of these records provides a
combination of credentials and other data that allow an incoming MKWS client
to be identified as having legitimate access to the library. The authentication
process, described below, works by searching for a matching User Access record.

Authenticating your MWKS application onto the library

Some MKWS applications will be content to use the default library with its
selection of targets. Most, though, will want to define their own library providing
a different range of available targets. An important case is that of applications
that authenticate onto subscription resources by means of back-end site cre-
dentials stored in MKAdmin: precautions must be taken so that such library
accounts do not allow unauthorised access.

Setting up such a library is a process of several stages.

Create the User Access account

Log in to MKAdmin to add a User Access account for your library:

• Go to http://mkx-admin.indexdata.com/console/

• Enter the administrative username/password

• Go to the User Access tab

• Create an end-user account

• Depending on what authentication method is to be used, set the User
Access account’s username and password, or referring URL, or IP-address
range.

If your MWKS application runs at a well-known, permanent address – http:
//yourname.com/app.html, say – you can set the User Access record so that
this originating URL is recognised by setting it into the “Referring URL” field.
Then the application will always use the library that this User Access record
is associated with (unless it sends a username/password pair to override this
default).

Or if your application’s users are coming from a well-known range of IP-address
space, you can enter the range in the “IP Ranges” field. The format of this

10

http://mkx-admin.indexdata.com/console/
http://yourname.com/app.html
http://yourname.com/app.html

field is as follows: it can contain any number of ranges, separated by commas;
each range is either a single IP address or two addresses separated by a hyphen;
each IP address is four small integers separated by periods. For example,
80.229.143.255-80.229.143.255, 5.57.0.0-5.57.255.255, 127.0.0.1.

Alternatively, your application can authenticate by username and password
credentials. This is a useful approach in several situations, including when you
need to specify the use of a different library from the usual one. To arrange for
this, set the username and password as a single string separated by a slash – e.g.
mike/swordfish – into the User Access record’s Authentication field.

You can set multiple fields into a single User Access record, or create multiple
User Access records. For example, a single User Access record can specify both
a Referring URL and a username/password pair that can be used when running
an application from a different URL. But if multiple Referring URLs are needed,
then each must be specified in its own User Access record.

(Optional): embed credentials for access to the library

When credential-based authentication is in use (username and password), it’s
necessary to pass these credentials into the Service Proxy when establishing
the session. This is done by providing the sp_auth_credentials configuration
setting as a string containing the username and password separated by a slash:

mkws_config = { sp_auth_credentials: "mike/swordfish" };

(Optional): conceal credentials from HTML source

Using credential-based authentication settings such as those above reveals the
credentials to public view – to anyone who does View Source on the MKWS
application. This may be acceptable for some libraries, but is intolerable for
those which provide authenticated access to subscription resources.

In these circumstances, a different approach is necessary. Referer-based or IP-
based authentication may be appropriate. But if these are not possible, then
a more elaborate approach can be used to hide the credentials in a web-server
configuration that is not visible to users.

The idea is to make a Service Proxy authentication URL local to the customer,
hiding the credentials in a rewrite rule in the local web-server’s configuration.
Then local mechanisms can be used to limit access to that local authentication
URL. Here is one way to do it when Apache2 is the application’s web-server,
which we will call yourname.com:

Step 1: add a rewriting authentication alias to the configuration:

11

RewriteEngine on
RewriteRule /spauth/ http://sp-mkws.indexdata.com/service-proxy/\

?command=auth&action=check,login&username=U&password=PW [P]

Step 2: set the MKWS configuration setting service_proxy_auth to
http://yourname.com/spauth/.

Step 3: protect access to the local path http://yourname.com/spauth/ (e.g. us-
ing a .htaccess file).

Choosing targets from the library

MKWS applications can choose what subset of the library’s targets to use, by
means of several alternative settings on individual widgets or in the mkws_config
structure:

• targets – contains a Pazpar2 targets string, typically of the form
“pz:id=” or “pz:id~” followed by a pipe-separated list of low-level
target IDs. At present, these IDs can take one of two forms, de-
pending on the configuration of the Service Proxy being used: they
may be based on ZURLs (so a typical value would be something like
pz:id=josiah.brown.edu:210/innopac|lui.indexdata.com:8080/solr4/select?fq=database:4902)
or they may be UDBs (so a typical value would be something like
pz:id=brown|artstor)

• targetfilter – contains a CQL query which is used to find relevant
targets from the relvant library. For example, udb==Google_Images or
categories=news

• target – contains a single UDB: that of the sole target to be used. For
example, Google_Images. This is merely syntactic sugar for “targetfilter”
with the query udb==NAME

For example, a Records widget can be limited to searching only in targets that
have been categorised as news sources by providing an attribute as follows:

<div class="mkws-records" targetfilter=’categories=news’/>

Reference guide

Widgets

The following widgets are provided in the core set. (Others can be added: see
the MKWS developers’ guide.)

12

mkws-developer.html

Name Description
auth-name Initially

empty, it
updates
itself to
shows the
name of the
library that
the
application
is logged in
as when
authentica-
tion is
complete.

builder A button
which,
when
pressed,
analyses
the current
settings of
the team
that it is a
part of, and
generates
the HTML
for an auto-
searching
element
that will
replicate
the present
search.
This HTML
is displayed
in an alert
box: it is
intended
that this
widget be
subclassed
to store the
generated
widget
definitions
in more
useful
places.

button The search
button.
Usually
generated
by a
search
widget.

categories Obtains
from the
Service
Proxy a list
of the
target
categories
associated
with the
library in
use, and
displays
them in a
drop-down
list. When
a category
is selected,
searches are
limited to
the targets
that are
part of that
category.

config This widget
has no func-
tionality of
its own, but
its configu-
ration is
copied up
into its
team,
allowing it
to affect
other
widgets in
the team.
This is the
only way to
set configu-
ration
settings at
the team
level.

console-builder Like the
builder
widget, but
emits the
generated
HTML on
the
JavaScript
console.
This exists
to provide
an example
of how to
subclass the
builder
widget.

cover-art Displays
cover art
for a book
by
searching in
Amazon.
Often used
with an
autosearch
attribute to
indicate
what book
to display.
For ex-
ample, <div
class="mkws-cover-art"
autosearch="isbn=1291177124"></div>
displays
cover art
for All
Yesterdays:
Unique and
Speculative
Views of
Dinosaurs
and Other
Prehistoric
Animals.
For this
widget to
work, a
library that
includes the
Amazon-
Books
target must
be used.
For
example,
the
“DEMO
Amazon-
Books for
MKWS”
account,
which can
be selected
with
sp_auth_credentials="mkws-amazon/mkws".

details This widget
is generated
by the
toolkit itself
to hold the
full details
of records
that are
initially
listed in
summary
form.

done Initially
empty, this
widget is
set to
display
“Search
complete:
found n
records”
when all
targets have
completed
their work,
either
returning a
hit-count or
an error.
The
message
displayed
can be
changed by
overriding
the done
template
using
<script
class="mkws-template-done"
type="text/x-handlebars-template">.

facet A facet that
displays the
frequency
with which
a set of
terms occur
within a
specific
field. The
specific
field whose
contents are
analysed
must be
specified by
the widget’s
facet con-
figuration
setting,
which may
conve-
niently be
done by
means of
the
data-mkws-facet
attribute on
the HTML
element.
The
supported
facets are
“subject”,
“author”,
and
“xtargets” –
the latter a
special case
which
treats the
target
providing a
record as a
facet. Most
often,
facet
widgets are
generated
by a
facets
widget,
which
knows
which
facets are
required,
but they
can also be
placed indi-
vidually.

facets An area
that
contains a
“Facets”
heading
and several
facet
widgets.
The set of
facet
widgets
generated is
specified by
the facets
configura-
tion setting,
which may
be set
globally or
at the level
of the
widget or
the team.
The value
of this con-
figuration
setting is
an array of
zero or
more
strings,
each
naming a
facet.

google-image A speciali-
sation of
the images
widget
which
defaults to
the
Google_Images
target.

images A specialisa-
tion of the
records
widget
which
defaults to
the images
template.
Unlike the
default
summary
template,
this
displays an
image from
the URL
specified by
the
md-thumburl
field of each
record.

lang Provides a
selection
between the
supported
set of
languages
(which
defaults to
English,
German
and Danish,
but can be
configured
by the lang
configura-
tion setting,
whose value
is an array
of
two-letter
language
codes).

log Initially
empty, this
widget accu-
mulates a
log of
messages
generated
by the
widget set,
similar to
those
emitted on
the
JavaScript
console.

lolcat A speciali-
sation of the
google-image
widget
which
defaults to
the
search-term
“kitteh” and
auto-
executes.

motd-container An empty
container,
which the
motd
widget (if
there is
one) is
moved into
for initial
display.
Usually
generated
as part of
the
results
widget.

motd May be
provided,
containing
content to
appear in
the area
where
records will
later
appear. It
is moved
into this
area (the
motd-container
widget) and
initially
displayed;
then hidden
when the
first search
is run. It
can be used
to provide a
“message of
the day”.

navi Shows a list
of the
facets that
have been
selected,
and allows
them to be
deselected.

pager Shows a list
of the
available
pages of
results, and
allows the
user to
navigate to
a selected
page.

per-page Provides a
dropdown
allowing
the user to
choose how
many
records
should
appear on
each page.
The
available
set of
page-sizes
can be
specified as
the
perpage_options
configura-
tion setting,
whose value
is an array
of integers.
The initial
selected
value can
be specified
by the
perpage_default
configura-
tion
setting.

progress Shows a
progress
bar which
indicates
how many
of the
targets have
responded
to the
search.

query The input
area for a
query.
Usually
generated
by a
search
widget.

ranking The result-
ranking
area,
consisting
of a sort
widget and
a per-page
widget.
These may
instead be
specified
separately
if preferred.

record A detailed
display of a
single
record,
usually
appearing
when the
user clicks
on a
summary
record.
This is
generated
by the
records
widget.

records The area in
which
summary
records
appear.
(Clicking on
a summary
record
make it pop
up as a
detailed
record.)

reference A short
summary
about a
subject
specified by
the
autosearch
configura-
tion setting.
This is
created by
drawing a
picture and
a paragraph
of text from
Wikipedia.
To work
correctly,
this widget
must be
used in a
library that
provides the
wikimedia_wikipedia_single_result
target.

results A large
compound
widget used
to provide
the most
important
results-
oriented
widgets in a
pre-
packaged
framework:
facets,
ranking,
pager,
navi and
records.

search-form The search
form,
containing
the query
area and
the button.
Usually
generated
by a
search
widget.

search The search
box,
consisting
of a form
containing
a query
area and a
button.

sort Provides a
dropdown
allowing
the user to
choose how
the
displayed
records
should be
sorted. The
available
set of sort
criteria can
be specified
as the
sort_options
configura-
tion setting,
whose value
is an array
of two-
element
arrays. The
first item of
each
sub-array is
a Pazpar2
sort-
expression
such as
data:0 and
the second
is a human-
readable
label such
as newest.
The initial
selected
value can
be specified
by the
sort_default
configura-
tion
setting.

stat A summary
line stating
how many
targets
remain
active, how
many
records
have been
found, and
how many
of them
have been
retrieved
for display.
For most
purposes,
the
progress
widget may
be
preferable.

summary A short
record,
included in
the list
shown when
a search is
run. When
clicked, this
generally
pops up a
detailed
record
widget.
This widget
is generated
by the
toolkit, in
response to
search
results.

switch A pair of
buttons
allowing
the user to
switch
between
viewing the
search
results (the
usual case)
or the
target list.

targets A list of all
targets in
the present
library,
showing
their ID,
the number
of records
they have
found for
the current
search, any
diagnostics
they have
returned,
the number
of records
that have
been
returned for
display, and
the
connection
state.

waiting An image,
defaulting
to http:
//mkws.
indexdata.
com/
progress.
gif unless
overridden
with the
src configu-
ration item,
which is
initially
invisible,
appears
when a
search is
submitted,
and
disappears
when the
search is
complete.

13

http://mkws.indexdata.com/progress.gif
http://mkws.indexdata.com/progress.gif
http://mkws.indexdata.com/progress.gif
http://mkws.indexdata.com/progress.gif
http://mkws.indexdata.com/progress.gif
http://mkws.indexdata.com/progress.gif

Configuration settings

Configuration settings may be provided at the level of a individual widget, or a
team, or globally. Per-widget configuration is described above; per-team settings
can be placed in a config widget belonging to the relevant team, and will be
applied to that team as a whole; and global settings are provided in the global
variable mkws_config. This structure is a key-value lookup table, and may
specify the values of many settings.

Some settings apply only to specific widgets; others to the behaviour of the
toolkit as a whole. When a widget does not itself have a value specified for a
particular configuration setting, its team is consulted; and if that also does not
have a value, the global settings are consulted. Only if this, too, is unspecified,
is the default value used.

The supported configuration settings are described in the table below. For those
settings that apply only to particular widgets, the relevant widgets are listed.
All entries are optional, but if specified must be given values of the specified
type. Long default values are in footnotes to keep the table reasonably narrow.

14

Setting Widget Type Default Description
autosearch facet,

facets,
record,
records,
results

string If provided,
this setting
contains a
query which
is
immediately
run on behalf
of the team.
Often used
with an
indirect
setting.

facet facet string For a facet
widget, this
setting is
mandatory,
and indicates
which field to
list terms for.
Three fields
are
supported:
subject,
author, and
xtargets –
the latter is a
special case
which treats
the target
(that is
providing a
record) as a
facet. Any
other field
may also be
used, but the
default
caption and
maximum
term-count
may not be
appropriate,
needing to be
overridden by
facet_caption_*
and
facet_max_*
settings.

facet_caption_* facet string Specifies
what
on-screen
caption is to
be used for
the named
facet: for
example, if a
date facet is
generated,
then
facet_caption_date
can be used
to set the
caption to
“Year”.

facet_max_* facet int Specifies how
many terms
are to be
displayed for
the named
facet: for
example, if a
publisher
facet is
generated,
then
facet_max_publisher
can be used
to limit the
list to the
top six.

facets team array Note 1 Ordered list
of names of
facets to
display.

freeze_opacity records float If defined, a
fractional
value
between in
the range 0.0
(transparent)
to 1.0
(opaque).
During the
short period
after a
mouse-move
over the
records when
the display
will not be
updated, the
widget is
faded to that
opacity
(reverting to
full opacity
when the
period
elapses or the
mouse leaves
the area).

lang team string The code of
the default
language in
which to
display the
UI.
Supported
language
codes are en
= English, de
= German,
da = Danish,
and whatever
additional
languages are
configured
using
language_*
entries (see
below).

lang_options lang array [] A list of the
languages to
offer as
options. If
empty (the
default), then
all configured
languages are
listed.

language_* global hash Support for
any number
of languages
can be added
by providing
entries whose
name is
language_
followed by
the code of
the language.
See the
separate
section below
for details.

limit facet,
facets,
record,
records,
results

string Allows a
partial search
to be
included in
the
specification
of an auto-
executing
widget. This
is ANDed
with the
submitted
query, as
though it had
been selected
from a facet.
See the
Search
section in the
Protocol
chapter of
the Pazpar2
manual

log_level global string info The lowest
level of
logging
output to
emit.
Acceptable
values are
trace,
debug, info,
warn, error,
and fatal.

maxrecs facet,
facets,
record,
records,
results

int Limits the
metasearch-
ing
middleware
to retrieving
no more than
the specified
number of
records from
each target.

newsearch_opacity records,
facets

float If defined, a
fractional
value
between in
the range 0.0
(transparent)
to 1.0
(opaque).
When a new
search is
submitted,
the widget
fades to that
opacity
(reverting to
full opacity
when data
arrives).

paragraphs reference int Limits the
number of
paragraphs
rendered to
the specified
number. If
omitted,
there is no
limit.

pazpar2_url global string If specified,
this is the
URL used to
access the
metasearch
middleware.
This service
must be
configured to
provide
search
results,
facets, etc. It
may be either
unmediated
Pazpar2 or
the
MasterKey
Service
Proxy, which
mediates
access to an
underlying
Pazpar2
instance.
When not
specified, the
URL is
assembled
from
pp2_hostname
and
pp2_path.
See the
Assembling
Pazpar2
URLs section
below.

perpage facet,
facets,
record,
records,
results

int Specifies the
number of
records to
show per
page in an
auto-
executing
widget.
Contrast
with
perpage_default,
which is used
to prime the
dropdown
with which a
user chooses
the page-size
in an
interactive
session.

perpage_default team string 20 The initial
value for the
number of
records to
show on each
page.

perpage_options ranking array Note 2 A list of
candidate
page sizes.
Users can
choose
between
these to
determine
how many
records are
displayed on
each page of
results.

pp2_hostname global string Note 3 Unless
overridden by
the
pazpar2_url
setting, this
is used
together with
pp2_path to
construct the
URL to the
Pazpar2
service (or
Service
Proxy). Set
this to
connect to a
service on a
different host
from the
default.

pp2_path global string Note 4 Unless
overridden by
the
pazpar2_url
setting, this
is used
together with
pp2_hostname
to construct
the URL to
the Pazpar2
service (or
Service
Proxy). Set
this to
connect to a
service on a
different host
from the
default.

scan_all_nodes global bool false An internal
setting that
changes how
MKWS scans
the HTML
document to
discover
widgets. If
set to true, a
different
approach is
used which
may be faster
under some
circum-
stances.

sentences reference int Limits the
number of
sentences
rendered to
the specified
number. If
omitted,
there is no
limit.

service_proxy_auth global url If defined,
this is the
URL which,
when
use_service_proxy
is true, is
fetched once
at the
beginning of
each session
to
authenticate
the user and
establish a
session that
encompasses
a defined set
of targets to
search in.
When not
defined, the
URL is
assembled
from
sp_auth_hostname
or
pp2_hostname,
pp2_path or
sp_auth_path,
sp_auth_query,
and
sp_auth_credentials.
See the
Assembling
Pazpar2
URLs section
below.

service_proxy_auth_domain global domain When the
server used
for authenti-
cation –
e.g. the one
identified by
the
service_proxy_auth
URL –
proxies for
different
server, this
can be set to
the domain
of the server
that it
proxies for,
so that
cookies are
rewritten to
appear to be
from this
domain.

show_lang lang bool true Indicates
whether or
not to display
the language
menu.

show_perpage ranking bool true Indicates
whether or
not to display
the perpage
menu.

show_sort ranking bool true Indicates
whether or
not to
display the
sort menu.

show_switch switch bool true Indicates
whether or
not to
display the
switch menu.

sort facet,
facets,
record,
records,
results

string Specifies the
order in
which to sort
the records
retrieved by
an auto-
executing
widget. Must
be one of
those in the
sort_options
array.
Contrast
with
sort_default,
which is used
to prime the
dropdown
with which a
user chooses
the sortorder
in an
interactive
session.

sort_default team string relevance The default
sort criterion
to use. Must
be one of
those in the
sort_options
array.

sort_options ranking array Note 5 List of
supported
sort criteria.
Each element
of the list is
itself a
two-element
list: the first
element of
each sublist
is a Pazpar2
sort-
expression
such as
data:0 and
the second is
a human-
readable
label such as
newest.

sp_auth_credentials global string If defined,
this must be
a slash-
separated
combination
of username
and
password,
which is sent
as the au-
thentication
credentials
on session
initialisation.
See the
Assembling
Pazpar2
URLs section
below.

sp_auth_hostname global string If provided,
overrides the
pp2_hostname
setting when
constructing
the Service
Proxy au-
thentication
URL. This
need only be
used when
authentica-
tion is
performed on
a different
host from the
remaining
operations
(search,
retrieve, etc.)

sp_auth_path global string Part of the
URL used for
authentica-
tion. See the
Assembling
Pazpar2
URLs section
below.

sp_auth_query global string Note 6 Part of the
URL used for
authentica-
tion. See the
Assembling
Pazpar2
URLs section
below.

src waiting url The address
of an image
to use in the
waiting
widget in
place of the
default
spinning
wheel. Used
to indicate
that a search
is in progress.

target facet,
facets,
record,
records,
results

string One of three
ways to select
which targets
are used by
an auto-
searching
widget. See
the Choosing
targets from
the library
section
above.

targetfilter facet,
facets,
record,
records,
results

string One of three
ways to select
which targets
are used by
an auto-
searching
widget. See
the Choosing
targets from
the library
section
above.

targets facet,
facets,
record,
records,
results

string One of three
ways to select
which targets
are used by
an auto-
searching
widget. See
the Choosing
targets from
the library
section
above.

template details,
done, facet,
facets,
images,
lang, navi,
pager,
progress,
ranking,
records,
reference,
results,
search,
stat,
switch,
targets

string Numerous
widgets use
Handlebars
templates to
render
HTML. In
general, each
of these by
default uses a
template
with the
same name
as the widget
itself.
Individual
widgets can
be
customised
to use a
template of a
different
name, by
means of
their
template
setting. The
records
widget (and
record: an
equivalent
that shows
only a single
record) use
the summary
template as
well as the
records
template.

text builder string “Build!” Specifies
what text to
use for the
Builder
button.

use_service_proxy global bool true If true, then
a Service
Proxy is used
to deliver
searching
services
rather than
raw Pazpar2.
An authenti-
cation phase
is run during
initialisation.

15

http://www.indexdata.com/pazpar2/doc/pazpar2_protocol.html
http://www.indexdata.com/pazpar2/doc/pazpar2_protocol.html
http://www.indexdata.com/pazpar2/doc/pazpar2_protocol.html
http://www.indexdata.com/pazpar2/doc/pazpar2_protocol.html
http://www.indexdata.com/pazpar2/doc/pazpar2_protocol.html

The show_lang, show_perpage, show_sort, and show_switch configuration
settings are technically redundant, as the relevant widgets, like all widgets, are
displayed only when they are provided. But they are retained as an easier route
to lightly customise the display, than by providing a full HTML structure.

Notes

1. The default for facets is ["xtargets", "subject", "author"]

2. The default for perpage_options is [10, 20, 30, 50]

3. The default for pp2_hostname is "sp-mkws.indexdata.com"

4. The default for pp2_path is "service-proxy/"

5. The default for sort_options is [["relevance"], ["title:1",
"title"], ["date:0", "newest"], ["date:1", "oldest"]]

6. The default for sp_auth_query is "command=auth&action=perconfig"

Indirect settings

The values of any setting are generally interpreted literally. However, it is
possible to specify a value indirectly – for example, by reference to a query
parameter – and this is often useful in contexts such as specifying an autosearch
query. Settings of this kind have values beginning with an exclamation mark,
and take the form !type!value.

The currently supported types are:

• param – uses the value of the specified query parameter for the URL. For
example <div class="mkws-results" autosearch="!param!term">
will auto-search for the word “sushi” if the page containing that widget is in-
voked from the URL http://example.com/magic/example.html?term=sushi

• path – uses the value of the _n_th component of the URL path, as
specified by the value. For example !path!3 will auto-search for the word
“dinosaur” if the page containing that widget is invoked from the URL
http://example.com/magic/lookup/dinosaur

• var – uses the value of the named JavaScript global variable. This is
a very powerful and general mechanism. For example, to search for the
reversed value of the query parameter called reverseTerm, you might write
a JavaScript function to do the extraction and reversing, then use the
following HTML:

<script>var _reversedParam = extractAndReverse("term");</script>
<div class="mkws-results" autosearch="!var!_reversedParam">

16

Assembling Pazpar2 URLs

Most of MKWS’s functionality is achieved by use of the Pazpar2 middleware.
This is accessed on an endpoint URL which is usually assembled from the two
configuration settings pp2_hostname and pp2_path. However, if for some reason
an unusual Pazpar2 endpoint must be used, that endpoint can be specified in
the pazpar2_url setting, and that will be used instead.

In the common case where Pazpar2 is accessed via the Service Proxy, an authen-
tication call is made during initialisation. The call is generally made to the same
endpoint as the other requests. However, the hostname used for authentication
may if necessary be overridden using the sp_auth_hostname setting, and the
path overridden by sp_auth_path. In any case, the value of sp_auth_query is
appended; and if sp_auth_credentials is set, then it is used to add username
and password parameters.

So in the absence of any configuration added by an application, the
Service Proxy authentication URL is made up of pp2_hostname (sp-
mkws.indexdata.com) since sp_auth_hostname is undefined; and pp2_path
(service-proxy/) since sp_auth_path is undefined; and sp_auth_query (com-
mand=auth&action=perconfig); and no credentials, since sp_auth_credentials
is undefined. Therefore the URL http://sp-mkws.indexdata.com/service-proxy/?command=auth&action=perconfig
is generated.

Language specification

Support for another UI language can be added by providing an entry in the
mkws_config object whose name is language_ followed by the name of the
language: for example, language_French to support French. The value of this
entry must be a key-value lookup table, mapping the English-language strings
of the UI into their equivalents in the specified language. For example:

var mkws_config = {
language_French: {

"Authors": "Auteurs",
"Subjects": "Sujets",
// ... and others ...

}
}

The following strings occurring in the UI can be translated:

• Search complete: found

• records

17

http://www.indexdata.com/pazpar2

• Displaying

• to

• of

• found

• Prev

• Next

• Sort by

• and show

• per page

• Search

• Active clients

• Retrieved records

• Records

• Targets

• Target ID

• Hits

• Diags

• Records

• State

In addition, facet names can be translated:

• Authors

• Sources

• Subjects

and whatever field captions are defined by facet_caption_* settings.

And sort-orders:

• relevance

• title

18

• newest

• oldest

and whatever sort-orders are defined by the sort_options setting.

Finally, the names of fields in the full-record display can be translated. These
include, but may not be limited to:

• Title

• Date

• Author

• Links

• Subject

• Locations

jQuery UI popup invocation

The MasterKey Widget Set can be invoked in a popup window at the top of the
page.

Note that the popup widget uses facilities from the jQuery UI, so it’s necessary
to include both CSS and JavaScript from that toolkit. The relevant lines are:

<script src="http://code.jquery.com/ui/1.10.3/jquery-ui.min.js"></script>
<link rel="stylesheet" type="text/css"

href="http://code.jquery.com/ui/1.10.3/themes/smoothness/jquery-ui.css" />

<div class="mkws-search"></div>
<div class="mkws-popup" popup_width="1024" popup_height="650" popup_autoOpen="0">

<div class="mkws-switch"></div>
<div class="mkws-lang"></div>
<div class="mkws-results"></div>
<div class="mkws-targets"></div>
<div class="mkws-stat"></div>

</div>

Popup windows can contain any HTML, not just MKWS widgets.

The properties of the popup widget are as follows:

19

Setting Type Default Description
popup_width int 880 Width of the

popup
window, in
pixels.

popup_height int 760 Height of the
popup
window, in
pixels.

popup_button string input.mkwsButton A jQuery
selector
identifying
the element
which, which
clicked, pops
up the
window.

popup_modal bool 0 Indicates
whether the
popup is
modal
(blocks access
to the
background
page until
dismissed).
Set to 1 if a
modal popup
is required.

popup_autoOpen bool 1 Indictaes
whether to
pop up the
window auto-
matically
when the
page is
loaded.

Multiple popup widgets can co-exist on a page. In this case, different
popup_button values must be used for each.

20

Structure of HTML generated by widgets

In order to override the default CSS styles provided by the MasterKey Widget
Set, it’s necessary to understand the structure of the HTML elements that
are generated within the widgets. The HTML structure is as follows. As in
CSS .class indicates an instance of a class. A trailing * indicates zero or more
instances; a trailing ? indicates zero or one instance.

.mkws-progress
span.mkws-done
span.mkws-waiting

.mkws-search
form.mkws-search-form

input.mkws-query
input.mkws-button

.mkws-results
table

tbody
tr

td.mkws-facets-container-wide
div.mkws-facets

div.mkws-facet*
div.mkws-facet-title
div.mkws-term*

a
span

td.mkws-motd-container
div.mkws-ranking

form
select.mkws-sort

option*
select.mkws-perpage

option*
div.mkws-pager

div
div

span.mkws-prev
span.mkws-current-page
a*
span.mkws-next

div.mkws-navi
div.mkws-records

div.mkws-summary*
div.mkws-field-data

21

span.mkws-field-NAME*
div.mkws-details?

table
tbody

tr*
th
td

tr
td

div.mkws-facets-container-narrow

.mkws-targets
table

thead
tr

td*
tbody

tr*
td*

Appendix: compatibility roadmap

Wherever possible, we ensure that all functional changes in MKWS are backwards-
compatible, so that applications written against old versions of the toolkit will
continue to work when running against newer versions.

However, a few aspects of functionality may unavoidably change in backwards
incompatible ways. We ensure that this only happens with new major
versions – so it should always be safe to upgrade to a new minor version. As an
aid to porting old applications, we here note the specific backwards-incompatible
changes in the various major releases, and those planned for future major releases:

Major version 1.x

Versions of MKWS before v1.0 (including the only prior release, v0.9.1) used
camel-case class-names: without hyphens and with second and subsequent words
capitalised. So instead of mkws-search, it used to be mkwsSearch. And the
classes used to specify team names used an mkwsTeam_ prefix (with an underscore).
So instead of mkws-team-foo, it used to be mkwsTeam_foo.

The 1.x series of MKWS releases recognise these old-style class-names as well as
the canonical ones, as a facility for backwards compatibility. However, these
old class-names are deprecated, and support will be removed in v2.0.
Existing applications that use them should be upgraded to the new-style class
names as soon as is convenient.

22

Copyright (C) 2013-2016 Index Data ApS. http://indexdata.com

23

http://indexdata.com

	Introduction
	Simple example
	How the example works

	Defining widget elements
	Widget type
	Widget team

	Configuring widgets
	Global configuration
	Per-widget configuration

	Control over HTML and CSS
	Customised display using Handlebars templates
	Overriding templates
	Inspecting metadata for templating
	Internationalisation
	Example

	Some Refinements
	Message of the day
	Popup results with jQuery UI

	MKWS target selection
	Introduction
	Maintaining the library
	Authenticating your MWKS application onto the library
	Create the User Access account
	(Optional): embed credentials for access to the library
	(Optional): conceal credentials from HTML source

	Choosing targets from the library

	Reference guide
	Widgets
	Configuration settings
	Notes
	Indirect settings
	Assembling Pazpar2 URLs

	Language specification
	jQuery UI popup invocation
	Structure of HTML generated by widgets

	Appendix: compatibility roadmap
	Major version 1.x

